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This paper presents the CFD modeling of entropy generation of the Air Frame 
Subsystem as a component of integrated aircraft design/synthesis. Entropy calculation 
procedures for complicated geometries in curvilinear coordinates are described, including 
the effects of turbulence. Both inviscid and viscous calculations are reported and the 
contributions of the various terms in the entropy equation are investigated. The procedure is 
validated and then extended to the calculation of entropy generation associated with flow 
over the B747-200 aircraft. Results show that most of the entropy generation is due to 
turbulence. The viscous dissipation term in the entropy equation dominates compared to the 
heat transfer term. The implications of the results for design improvement are briefly 
discussed. 

Nomenclature 
Cp = pressure coefficient 
 f = friction factor 
M∞ =  free stream Mach number 
J                =   Jacobian of the coordinate transformation matrix 
k                =   turbulence kinetic energy 

TPr              =   turbulence Prandtl number  
s = entropy generation 

ijS            =   “ij” component of the strain rate tensor 

genS&  = entropy generation rate per unit volume 
Tw =  wall temperature 
γ = ratio of specific heats 
t                 =   time  
u, v, w        =  velocity components in the x, y, z Cartesian coordinate directions, respectively 

τu              =   friction velocity 
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),,( zyx     =   the Cartesian coordinate directions 
+y               =   shortest distance to the nearest wall normalized by the friction velocity and fluid kinematic 

                        viscosity 
α = angle of attack 

TT νµ ,        =   turbulence dynamic and kinematic viscosities, respectively 
ρ               =    fluid density 
ε               =   turbulence kinetic energy dissipation rate 

ijτ              =   the “ij” component of the shear stress tensor 

),,( ζηξ     =   the curvilinear coordinate directions 

I. Introduction 
he design/optimization of a complete aircraft system is difficult to analyze as one problem. The reasons for this 
include the high computational requirement and the disparate disciplines and/or location of personnel required 

for the various subsystems.1 The resolution of this difficulty has led to various decomposition procedures.2,3 Of 
interest in the present paper is the potential role of CFD as a component of an overall procedure for integrated 
design/synthesis of aerospace systems. 
 

A complete aircraft design problem typically consists of many subsystems, including the Air Frame-Structural, 
Air Frame-Aerodynamics, Environmental Control, Propulsion, Vapor Compression / PAO Loops Subsystem, 
Electrical, Hydraulic, Fuel Loop, Expendable Payload, Equipment Group, Permanent Payload, and Controls. In the 
present paper, the Air Frame Subsystem – Aerodynamics (AFS-A) is addressed via the use of advanced CFD 
software called AEROFLO developed by Thaerocomp Technical Corp. (TTC)for multi-disciplinary simulation. In 
particular, the contribution of this subsystem to the overall entropy generation in a complete aircraft design/synthesis 
task is investigated. 
 

Exergy or energy availability and entropy-based methods are gaining increased use in system synthesis and 
design. Compared to energy-based formulation which deals with the conversion and conservation of energy, 
entropy-based analysis additionally provides information on the quality of energy or the energy that is available for 
useful work. Adeyinka & Naterer4 presented CFD calculations of loss analysis based on entropy generation rate that 
is consistent with traditional energy-based loss correlations and used the procedure to select optimal diffuser 
geometry for the least losses. Sciubba5 used local entropy generation results to suggest areas for improvement in 
turbomachinery designs. Adeyinka & Naterer6 showed that the flow losses in pipes could be directly measured by 
the entropy generation rate. A detailed review of entropy and its significance in CFD is presented by Naterer and 
Camberos.7  

 
In spite of the foregoing, entropy-based simulations provide a challenge because of the scarcity of experimental 

data to validate computations.6 As a result, many entropy-based studies have relied on analytic solutions for 
validation, using simple canonical problems. To our knowledge, entropy-based procedures have not yet been applied 
to entire aircraft geometry. An objective of the current work is to demonstrate the viability of entropy-based 
methods for more geometrically complicated fluid dynamic problems. It is pointed out that a representation of losses 
in terms of entropy generation offers significant insight into the flow and thermal transport phenomena over the air 
frame and provides an effective tool for improving performance. For AFS-A, the general areas for design 
improvement could include the shape of the wing, the construction details of the leading and trailing edges, the 
fuselage, and the various appendages. After the flow and thermal fields have been computed, the local values of the 
thermal and entropy-generation rates can be obtained. The information enables the designer to detect, by inspection, 
the key areas that require a modification in order to obtain an optimized design. The platform for the present 
analysis is the Boeing 747-200 commercial aircraft. Entropy generation from both inviscid and viscous calculations 
is reported. The integration of the CFD-generated data for AFS-A into the overall design/synthesis for a complete 
aircraft is the motivating factor for the present work. 
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II. The CFD Procedure for Entropy Generation 
 

The flows of interest are turbulent which, combined with the complex geometries involved, tests the ability of 
any CFD tool to generate accurate design data. At a first glance, it would seem that accurate entropy generation data 
could be obtained by solving the evolution equation for the entropy per unit volume: 
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If we assume RANS-type averaging for a moment: iii uuu ′+= , where iu  is the average velocity and iu′  is the 
fluctuating velocity, we end up with the following equation for averaged entropy:8 
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Entropy generation obtained from the solution of the entropy transport equation will probably not be accurate. 
Instead, formulations based on the Onsager relations9 are preferred in order to avoid unphysical results. This relation 
is quasi-steady:  
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where the term on the left-hand side represents the entropy generation per unit volume. The first term on the right 
represents irreversibilities related to the degradation of mechanical energy into internal energy6 while the second 
term represents irreversiblities related to heat transfer across finite temperature differences. 
 

Although Eq. (2) appears to be more convenient for calculating entropy generation compared to the transport 
equation, it shares some of the turbulence modeling problems associated with the viscous dissipation and heat flux-

temperature gradient correlation, which can be written as 
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We see that the terms on the right-hand side need to be modeled.  
 

The foregoing modeling issues are topical and have not received enough attention. The invocation of the so-
called “Small Thermal Turbulence Assumption” proposed by Bevan-Kramer8 allowed some calculations but the 
basic modeling issues remain. Adeyinka and Naterer6 provided a deeper insight into the problem in a recent paper.  
 
For the present studies, we have used the model proposed by Moore10 to calculate the average entropy generation 
per unit volume: 
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where eddy viscosity-type assumptions are made: 
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The average entropy generation rate can be expressed in non-dimensional form as follows: 
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Note that integration over volume of the entropy per unit volume is required in order to obtain the total entropy 
generation in the domain. Also note that the above formulation allows the rate of entropy generation to be computed 
as a derived (post-processed) quantity. 
 

Observations have shown that the contributions to the entropy generation rate in Eq. (3) show very steep 
gradients close to a wall and numerical simulations are far more effective with wall functions for the production 
terms.6,11,12 This is particularly important for simulations with large values of y+ (necessary when it is 



 
American Institute of Aeronautics and Astronautics 

 

5

computationally impractical to resolve the flow at the wall for large calculations). The high Reynolds number k−ε 
model employs wall functions in place of fine resolutions at the wall. It has been used for turbulent entropy 
calculations.12 The details of the model are presented below. 

 
A. Turbulence Viscosity Models 
 

The turbulent shear stress is approximated in the usual eddy viscosity form: 
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The constants in the above equations are Cµ = 0.09, ρκ = 1.0, ρε = 1.3, C1 = 1.44, C2 = 1.92 and ijij SP ~~τ=  is the 

turbulent production. For boundary conditions, a two layer “law of the wall” was used to impose the k and ε values 
at the first point (on the wall). A wall function was also used in the viscous sublayer. Details of the formulation can 
be found in the work of Steffen.17 
 
B. Numerical Procedures 
 

We use a high-order, finite-difference scheme in a curvilinear coordinate system. In standard notations, the 
filtered equations can be written as 
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By using the implicit, approximately-factored finite-difference algorithm of Beam-Warming and employing a 
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and superscripts “p” and “n” denote the sub-iteration steps and the outer-loop time steps, respectively.  In the above 
equations, (ξ, η, ς) are the curvilinear coordinate directions and st∆ is the time step for the sub-iterations. Either a 
first or second-order temporal accuracy can be specified in the above iterative procedure by selecting 0φ =  or 

1/ 2φ = . For 1p = , p nU U= and pn UU =+1  at convergence in p. 
 

Note that the default spatial discretization procedure in AEROFLO is based on high-order differencing, while 
the standard, simple (low order) schemes are available as options. For the former and assuming subsonic flows, we 
use the compact Padé approximant method for spatial differencing. Consider the differencing of a flow variable u 
along the ξ direction (that is, ξ∂∂ /u ). The problem is to utilize the known iu values to estimate the derivative 

iuu ξ∂∂≡ /' at each mesh point. In the interior, a centered formula is employed: 
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For high-order differencing of flow fields with shock waves, the weighted essentially non-oscillatory (WENO) 
procedure is used, which can be summarized as follows, if we consider the ξ direction in Eq. (5) as an example: 
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with rω as the normalized weights, )( rrr ωωω = and dγ are constants, ε is a robustness factor that prevents the 
occurrence of a zero denominator, while βγ  is a smoothness indicator, which is related to the undivided difference. 
The positive sign indicates upwind, while negative implies downwind. We set 1410−≈ε and use spectral radius 
from coupled equation systems to compute the value of α, as opposed to a component-wise procedure to determine 
this parameter. Note that crm are coefficients of Lagrange interpolation formula.13 

 

III. Results 
 

Validations of the entropy generation calculation in AEROFLO have been carried out using a laminar and 
turbulent channel flow, details of which are provided below. 
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A. Laminar Flow through a Channel 
 

The procedures described earlier in this paper have been used to calculate the flow between two flat parallel 
plates, as in Erbay et. al.14 This flow has been studied analytically and computationally by several investigators.15,16 
The physical system is illustrated in Fig. 1. The plates are separated by a distance H in the y-direction. The length of 
the channel, L, is 10H aligned parallel to the x-axis. The channel walls are both set at a temperature, Tw = 1.1T∞. 
 

No slip conditions, T = Tw, ∂P/∂n = 0 

L

u = U∞
v = 0
T = T∞
P = P∞

∂u/∂n = 0 
∂v/∂n = 0
∂P/∂n = 0
∂ρ/∂n = 0

H

No slip conditions, T = Tw, ∂P/∂n = 0 

L

u = U∞
v = 0
T = T∞
P = P∞

∂u/∂n = 0 
∂v/∂n = 0
∂P/∂n = 0
∂ρ/∂n = 0

H

 
Figure 1. Boundary conditions for flow through a channel 

 
Since the flow equations are solved in a compressible form, the temperature values are imposed by allowing the 

density to vary consistently with the computed pressure to satisfy the equation of state for a perfect gas. For 
instance, to set Tw, the density is imposed according to the following expression: 

 

w
w T

Ma2γρ = . 

 
The grid used is 200 x 50 with high mesh gradients close to the wall and y+ = 0.064. The Mach number and 

Reynolds number are 0.01 and 100, respectively. The compact schemes in AEROFLO were used for spatial 
differencing while the Beam-Warming scheme was used for time differencing. A time step size of 0.0005, was 
imposed with four sub-iterations for convergence within each time step. An initial condition of u = 0 and P = 
1/γMa2 was imposed. The simulation was run until steady state at a non-dimensional time of approximately T = 5. 
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Figure 2. (a) u/Um and (b) θ profiles compared with analytic solutions in the fully develop region. 

 
Results are shown in Figs. 2 through 5. Figure 2 shows comparison of the flow field with analytic solutions15 in 

the fully developed region at x/H = 9. The results show good agreement.  
 

The average Nusselt number, Nu, at the wall was computed as 7.14 compared with the analytic value15 of 7.534. 
This quantity is defined by the following expression: 
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Figure 3 shows the Nusselt number profile at the wall for the current calculations compared with the 

calculations of Erbay et. al.14 The results show good agreement except close to the inlet region. Note that in order to 
satisfy the equation of state, the density at the walls has a value of 1/1.1.  
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Figure 3. Nusselt number at the wall compared to solutions of Erbay et. al.14 
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Figure 4. Contours of (a) u, (b) T, and (c) s for Tw/T∞ = 1.1. 
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Figure 4 shows the u-velocity, temperature and entropy contours, which show good agreement with the plots 
presented by Erbay et. al14 (not shown). 
 

In order to determine the major contributions to entropy production, we have examined the following quantities 

from Eq. (3): 
T
1 , 

2
1

T
, 

j

i
ij x

u
T ∂

∂
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Re
1 , and 

2

22

1
PrRe)1(
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⎞
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⎝

⎛

∂
∂

− ∞ jx
T

TMγ
. Figure 5 shows the relative values of these 

components. The calculations show that more than 90% of the entropy generation is due to viscous dissipation. This 
is consistent with the observations of Adeyinka and Naterer.6 In general, most of the entropy is generated in the 
entry or inlet region or the developing region. This is due to the large velocity and temperature gradients that 
develop from the inlet prior to establishing a smooth temperature and velocity transition from the wall values. 
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Figure 5. Contours of (a)
T
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B. Turbulent Flow through a Channel 
 

The turbulent channel flow calculation based is based on the same geometry as that reported in the last section, 
except that the grid used is 300 x 140 and the Reynolds number is in the range 33 1050Re107 ×≤≤× . In addition, 
the high-Reynolds number k−ε turbulence model is used. This calculation is intended to validate the eddy viscosity 
model used for entropy calculations in the present paper. The entropy generation rate in the fully developed section 
of the channel is presented in Fig. 6. Adeyinka and Naterer6 related the friction factor for a turbulent pipe flow to the 
entropy generation in the developed section using the following equation: 
 

∫= dyST
u

f gen
&

3

4
ρ

.             (5) 

 
Figure 6(b) shows the comparison of the current calculations using Eq. (5) with the Colebrook equation with good 
agreement. 
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(a)           (b) 

Figure 6. (a) Entropy distribution at Re = 10,000 and (b) friction factor compared with Colebrook equations 
for flow through a turbulent channel 

 
C. Calculation of Flow over Boeing 747-200 Commercial Aircraft 
 

The entropy production associated with the flow over a Boeing 747-200 commercial aircraft was calculated, as 
a way of generating exergy-based design data for the AFS-A subsystem of an integrated aircraft design/synthesis 
analysis. The following conditions were used: M∞ = 0.855, α = 3.05o, reference area = 5500 sq ft (792,000 sq in), 
moment center = (1339.91, 0., 191.87) in., moment reference length = 327.8 in., and Re = 10680 per in. The spatial 
dimensions have been normalized with the moment reference length, leading to a reference Reynolds number, Re = 
3.5×106. Both Euler and Navier-Stokes calculations were carried out using high-order discretization. The 
computational grids contained nine blocks with the following grid points: fuselage 138 x 70 x 30 = 416,000, nose 
cone 31 x 20 x 30 = 18,600, tail cap )600,18302031( =×× , wing base 129 x 38 x 30 = 147,060, wing mid section 
50 x 129 x 29 = 187,050, wing tip (top) 77 x 41 x 28 = 81,508, wing tip (bottom) 77 x 41 x 28 = 81,508, wing patch 
71 x 71 x 71 = 357,911, and far-field grid 73 x 39 x 48 = 136,656. This yields a total number of grid points of 
1,444,993. The first grid at the wall is located approximately at ∆y = 1 x 10-4 which corresponds to a y+ ≈ 80. The 
grid used for the calculations is shown in Fig. 7 and described below. 
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(a) (b) 

Figure 7. Mesh used for the computation of flow around the B747-200. 
 

1. The B747-200 overset  grid system 
The fuselage surface is modeled using three overset blocks shown in Fig. 7(a). Block 2 (fuselage) spans most of 

the fuselage length in the physical x-direction. Blocks 3 and 4 are designed to cover the nose and tail surfaces of the 
fuselage. The later blocks are necessary to avert the computational singularities near the two poles. 
 

Figure 7(b) shows an ensemble view of the computational grids, Blocks 5 through 8, around the wing. Block 5 
(wing base) is a C-H type grid designed to connect the wing and fuselage surfaces. Block 6 (wing) is a C-type grid 
and extends over most of the wing span. Blocks 7 and 8 (wing tip top and bottom) consist of the H-H topology. The 
computational blocks around the wing exhibit enhanced grid density near the wing trailing edge and near the wing 
tip. For all computational blocks near solid walls (Blocks 2 through 8) the normalized grid space value at the wall is 
∆ = 1×10-4. 
 

A far-field box-shaped grid (not shown in Fig. 7) is designed to connect the computational blocks near the 
fuselage and the wing with far field conditions. For Block 1, the grids are clustered near the fuselage and wing 
blocks in all computational directions.  
 

Details of the calculation and some of the difficulties encountered in performing the simulations are presented 
in a separate paper title.18 The results are discussed below. 
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Figure 8. Contours of (a) entropy generation and (b) pressure around the B747-200 aircraft 
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Figure 9. Contours of (a) entropy generation and (b) pressure around the bottom of the B747-200 aircraft 
 
2. Viscous Entropy Generation 

Figure 8 shows the entropy and pressure contours at the top of the fuselage and the suction side of the wing 
while Fig. 9 shows the analogous plots at the bottom of the fuselage and the pressure side of the wings, respectively. 
From these figures, it can be noted that much of the entropy at the surface is generated on the top part of the plane, 
in the nose region and in the tip of the wing where the velocity gradients are maximum. In addition, high entropy 
generation can be found on the fuselage just above the wings and on the wings close to the junction where the wings 
and fuselage meet.  

 
Our calculations also show that most of the entropy is generated around the wing. This is illustrated in Figs. 10 

and 11. Figure 10 shows the entropy generation around the fuselage. The figure shows very low values of entropy 
generation compared to those found around the wing in Fig. 11. 
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Figure 10. Viscous entropy generation around the fuselage  
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Figure 11. Viscous Entropy generation at wing locations: (a) 14%, (b) 28%, (c) 42%, and (d) 71% 
 

Figure 12 shows the eddy viscosity plots at the same sections as in Fig. 11. The results show a correspondence 
between the areas of high eddy viscosity and entropy generation.  
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Figure 12 Eddy viscosities at various wing locations: (a) 14%, (b) 28%, (c) 42%, and (d) 71% 
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Figure 13 shows the relative contributions of the viscous dissipation-related term, 
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, the heat transfer-related term (Eq. 3) to the entropy generation rate at 14% and 

71% wing locations. The figures show that most of the entropy generation is due to viscous dissipation. However, 
closer to the fuselage (at the wing-fuselage junction), the heat transfer related term accounts for about 30% of the 
entropy generated and reduces to less than 5% further away from the fuselage. In the wing section from the base to 
about midpoint, the figure shows a high entropy generation close to the wing surface which reduces with the 
distance from the wing base. However, in the section between the midpoint and the wing tip, entropy generation 
increases on the suction side of the wing. In this section, there is provision for design improvement that will reduce 
the entropy generation rate on the suction side. In fact, as shown in Fig. 14, the high entropy generation on the 
suction side of the wing observable at 71% wing location also coincides with the separation region. 
 
Figure 15 shows the temperature around the fuselage at 14% and 71% wing locations. A weak shock in the 
temperature profile that coincides with the locations of high entropy generation can be observed. This region has 
high temperature gradients and occurs around the slight separation bubble on the suction side of the wing. Figure 16 

shows the plot of T/1 while Fig.17 shows the plots of
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. These figures 

show that the gradient-related terms have larger contributions to entropy generation rate compared to 
T/1 and 2/1 T . 
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Figure 13 Entropy components 
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locations:  (a) T1 at 14%, (a) T2 at 14%, (c) (a) T1 at 71%, and (d) T2 at 71%. 
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Figure 14 Velocity vectors at wing locations: (a) 14%, (b) 28%, (c) 42%, and (d) 71% 
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Figure 15 Temperature contours at wing locations: (a) 14%, (b) 28%, (c) 42%, and (d) 71% 
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Figure 16 T/1 contours at wing locations: (a) 14%, (b) 28%, (c) 42%, and (d) 71% 
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Figure 17 Entropy components 
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locations (a) T1*T at 14%, (a) T2*T2 at 14%, (c) (a) T1*T at 71%, and (d) T2* T2 at 71%. 
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3. Inviscid Entropy Generation  
Figure 18 shows the entropy generation around the fuselage for the inviscid case, while Fig. 19 shows the 

entropy generation at several sections along the wing. The spikes in the entropy profile (Fig. 19) coincident with the 
shock locations on the wing can be noted when compared with the pressure contour of Fig. 8(b) and 20 which shows 
the coefficient of pressure for both viscous and inviscid calculations. In addition, the entropy generation persists in 
the wing wake region. The figures show that while the entropy generation around the fuselage was of the same scale 
for the viscous and inviscid calculations, the plots of entropy generation around the wing for the viscous calculations 
show entropy generation that is approximately 1000 times that of the inviscid calculations. Most of the entropy 
generated was located in the boundary layer. Considering the eddy viscosity plot in Fig. 12, it appears that the 
quantity, (µ + µt), which has a magnitude of µt ≈ 1000µ accounts for the differences in the entropy production 
between both models. 
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Figure 18. Inviscid entropy generation around the fuselage 
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Figure 19. Inviscid entropy generation around the B747-200 wing (a) Several wing locations: (b) 14%, and (c) 
71% wing locations 
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Figure 20 Cp profiles at wing locations: (a) 14%, (b) 28%, (c) 42%, and (d) 71% 

 
Table 1 shows the total entropy integrated around the volume of the aircraft for viscous and inviscid 

calculations. The table shows the underestimation of entropy generation by inviscid models. This is expected on 
account of the neglect of the high velocity regions in the vicinity of the surfaces. In fact, most of the entropy 
generated in the inviscid calculations is found in the shock region. 
 

Table 1. Total entropy generation by each block 
Block Inviscid Viscous 

1 2.06 x 10-6 0.1044 
2 8.70 x 10-8 0.0014 
3 2.66 x 10-7 0.00042 
4 4.95 x 10-3 0.02656 
5 4.93 x 10-6 0.02722 
6 8.53 x 10-7 0.00313 
7 3.642 x 10-7 0.0029 
8 5.306 x 10-7 1.4 x 10-4 
9 ~10-9 ~10-9 

Total 4.96 X 10-3 0.166 
 

IV. Conclusion 
The entropy generation around a B747-200 aircraft has been analyzed using computational fluid dynamics. The 

contributions of the various terms in the entropy equation were assessed. Viscous and inviscid models were 
investigated. The calculations show that inviscid results underestimate the total entropy production by a factor of 
about 1000 and only capture the entropy generation due to shock and at the stagnation and wake regions. A major 
difference between the two models was found to be due to the turbulent eddy viscosity present in the viscous 
calculations. Comparison of the entropy generation terms associated with the viscous calculations shows that the 
viscous dissipation contribute approximately 90% of the total entropy production term, with the heat transfer-related 
term contributing the remaining 10%. In addition, the calculations show possibility of design improvement 
particularly in the wing sections removed away from the fuselage.  



 
American Institute of Aeronautics and Astronautics 

 

19

Acknowledgments 
This work was funded by the United States Air Force under Contract FA8650-05-C-3521 via the Phase II SBIR 

program. The authors are very grateful to the Air Force for giving Thaerocomp the opportunity to develop 
innovative research tools. 

References 
 
1Rancruel, D. F., A Decomposition Strategy Based on Thermoeconomic Isolation Applied to the Optimal Synthesis/Design 

and Operation of an Advanced Fighter Aircraft System, M.Sc. Thesis, Virginia State University, 2002. 
2Rancruel, D. F., von Spakovsky, M. R., 2004, Use of a Unique Decomposition Strategy for the Optimal Synthesis/Design 

and Operation of an Advanced Fighter Aircraft System, 10th AIAA/ISSMO Multi- disciplinary Analysis and Optimization 
Conference, Aug. 30 - Sept. 1, Albany, New York. 

3Muñoz, J.R., von Spakovsky, M.R., 2003, Decomposition in Energy System Synthesis / Design Optimization for Stationary 
and Aerospace Applications, AIAA Journal of Aircraft, special issue, Vol. 39, No. 6, Jan-Feb. 

4Adeyinka, O. B. and Naterer, G. F., “Predicted Entropy and Measures with Particle Image Velocimetry” AIAA 2002-2090, 
2002. 

5Sciubba, E., “Calculating Entropy with CFD” Mech, Eng (ASME) 119(10), 1997, pp 86-88. 
6Adeyinka, O. B. and Naterer, G. F., “Modeling of Entropy Production in Turbulent Flows” J. Fluid Eng. Vol. 126, 2004.pp. 

893-899. 
7Naterer, G. F., and Camberos, J. A., “Entropy Production Rates from Viscous Flow Calculations” . J. Thermophys. & Heat 

Transfer 17(3), 2003, pp 360-371. 
8Kramer-Bevan, J. S., “A tool for Analysis of Fluid Flow Losses” M.Sc Thesis, University of Waterloo, Canada,1992,. 
9Bejan, A., “Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Time Systems and 

Finite-Time Processes”, CRC Press. New York 1996. 
10Moore, J., and Moore, J. G., 1983. “Entropy Production Rates from Viscous Flow Calculations, Part I. A Turbulent 

Boundary Layer Flow,” ASME Paper 83-GT-70, ASME Gas Turbine Conference, Phoenix, AZ. 
11F. Kock, H. Herwig: Local Entropy Production in Turbulent Shear Flows: A High Reynolds Number Model with Wall 

functions, erscheint in: Int. J. Heat Mass Transfer, 2004 
12Thaerocomp Technical Corp. “AEROFLO User’s Manual”, 2004. 
13Erbay, L. B., Ercan, M. S., Sulus, B., and Yalcin, M. M., 2003. “Entropy Generation During Fluid Flow Between Two 

Parallel Plates with Moving Bottom Plate”, Entropy, 5, 506-518. 
14Sahin, A. Z., "Entropy Generation in a Turbulent Liquid Fluid Flow Through a Smooth Duct Subjected to Constant Wall 

Temperature", Int. Journal of Heat and Mass Transfer, vol. 43, pp. 1469-1478, 2000. 
15Kakac, S. and Yener, Y., 1995. “Convective Heat Transfer”, CRC Press, 2nd ed. 
16Mahmud,S., Fraser, R. A., "Thermodynamic Analysis of Flow and Heat Transfer Inside Channel with Two Parallel Plates", 

Exergy, an International Journal, vol. 2, pp. 140-146, 2002. 
17Steffen, C. J., “A Critical Comparison of Several Low Reynolds Number k-ε Turbulence Models for Flow Over a 

Backward-Facing Step”, NASA Technical Memorandum 106173. AIAA-93-1927. 
18Ladeinde, F., Alabi, K., Safta, C., Cai, X., 2006. “The First High –Order Simulation of Aircraft: Challenges and 

Opportunities”, AIAA 2006-1526. 44th Aerospace  Sciences Meeting, Reno, NV, January 2006. 
19Jameson, A., 2003. “CFD for Aerodynamic Design and Optimization: Its Evolution over the Last Three Decades”, AIAA 

2003-3438. 
 


